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a b s t r a c t 

Due to the irregular shapes,various sizes and indistinguishable boundaries between the normal and in- 

fected tissues, it is still a challenging task to accurately segment the infected lesions of COVID-19 on 

CT images. In this paper, a novel segmentation scheme is proposed for the infections of COVID-19 by 

enhancing supervised information and fusing multi-scale feature maps of different levels based on the 

encoder-decoder architecture. To this end, a deep collaborative supervision (Co-supervision) scheme is 

proposed to guide the network learning the features of edges and semantics. More specifically, an Edge 

Supervised Module (ESM) is firstly designed to highlight low-level boundary features by incorporating 

the edge supervised information into the initial stage of down-sampling. Meanwhile, an Auxiliary Seman- 

tic Supervised Module (ASSM) is proposed to strengthen high-level semantic information by integrating 

mask supervised information into the later stage. Then an Attention Fusion Module (AFM) is developed 

to fuse multiple scale feature maps of different levels by using an attention mechanism to reduce the 

semantic gaps between high-level and low-level feature maps. Finally, the effectiveness of the proposed 

scheme is demonstrated on four various COVID-19 CT datasets. The results show that the proposed three 

modules are all promising. Based on the baseline (ResUnet), using ESM, ASSM, or AFM alone can respec- 

tively increase Dice metric by 1.12%, 1.95%,1.63% in our dataset, while the integration by incorporating 

three models together can rise 3.97%. Compared with the existing approaches in various datasets, the 

proposed method can obtain better segmentation performance in some main metrics, and can achieve 

the best generalization and comprehensive performance. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since the outbreak of COVID-19 in December, 2019, it has 

pread rapidly around the world, and has caused millions of casu- 

lties and amount of economic losses. Rapid diagnosis of COVID- 

9 is of great significance for diagnosis, assessment and staging 

OVID-19 infection [1–3] . Nucleic acid testing is the “gold stan- 

ard” for the diagnosis of COVID-19, but the diagnosis are easily in- 

uenced by the quality of the sample collection, and it is also more 

ime consuming. Therefore, it is still common to use the imag- 

ng diagnosis methods such as CT and X-ray. Especially, the com- 

ining of artificial intelligence (AI) with other methods has been 

roposed to help auxiliary diagnosis by using medical images for 

OVID-19 in clinical practice, and some deep learning-based meth- 

ds are becoming hot spots in the detection and segmentation of 
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E-mail addresses: zqw@zjut.edu.cn (Q. Zhou), su.ruan@univ-rouen.fr (S. Ruan). 

o

o

t

T

ttps://doi.org/10.1016/j.patcog.2021.108452 

031-3203/© 2021 Elsevier Ltd. All rights reserved. 
OVID-19 infected areas. For example, a modified inception neural 

etwork was proposed to train the Regions of Interest (RoI) instead 

f the whole CT images for classifying COVID-19 patients from con- 

rol group [7] . Amyar et al. [5] proposed a multitask deep learning 

odel to jointly identify COVID-19 patient and segment COVID- 

9 lesion from chest CT images. Oulefki et al. [10] presented the 

tility of an automated tool of segmentation and measurement for 

OVID-19 lung Infection using chest CT imagery. Owing to the fact 

hat lung infected region segmentation is a necessary initial step 

or lung image analysis, some image segmentation algorithms are 

lso proposed for some specific application scenarios. For instance, 

n improved Inf-Net was proposed to segment the infection area 

f the novel coronavirus, and a semi-supervised training method is 

ut forward to solve insufficient amount of labeled CT and improve 

he segmentation performance [6] . Currently, most of the meth- 

ds are based on detection and classification tasks, but not much 

n the semantic segmentation of infection on CT slices [4] , so that 

he assessment and staging COVID-19 infection are greatly limited. 

herefore, according to CT imaging characteristics, it is necessary 

https://doi.org/10.1016/j.patcog.2021.108452
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108452&domain=pdf
mailto:zqw@zjut.edu.cn
mailto:su.ruan@univ-rouen.fr
https://doi.org/10.1016/j.patcog.2021.108452
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Fig. 1. An illustration of challenging task for identification the infected lesions (con- 

tours in red) of COVID-19 on CT images. (a) The infections have various scales and 

shapes. (b) There is no obvious difference between normal and infected tissues. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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o propose some segmentation methods for the infection regions 

f COVID-19, so that we can further achieve quantitative analysis 

f the lesions. 

However, it is a still challenging task to accurately segment the 

nfected lesions of COVID-19 on CT images owing to the following 

acts. 

1. The infections have irregular boundary, different sizes and 

shapes from slice to slice on CT images (shown in Fig. 1 a). It

would easily lead to missing some small ground-glass lesions 

or generating excessive over-segmentation for the infections on 

CT images. 

2. There seems to be no discernible difference between infections 

and normal tissues (shown in Fig. 1 b). It is unaffected for the 

detection or classification, but it can decrease segmentation ac- 

curacy and quantified quality. 

3. The existing semantic segmentation approaches like the 

encoder-decoder structure exist a “semantic gap” between low- 

level visual features and high-level semantic concepts, which 

greatly limits the efficiency of semantic segmentation. 

To address these issues, a novel segmentation scheme is pro- 

osed for the infections of COVID-19 based on the encoder-decoder 

rchitecture [11] in this paper, and the proposed scheme can col- 

aboratively enhance supervised information of different levels and 

use different scale feature maps. For the proposed deep collabo- 

ative supervision scheme, we propose an Auxiliary Semantic Su- 

ervised Module (ASSM) and an Edge Supervised Module (ESM) to 

uide the network learning the features of edges and semantics in 

he encoding stage, respectively. As for multi-scale feature maps, 

n Attention Fusion Module (AFM), following with the decoding 

tage, is proposed to reduce the semantic gaps between high-level 

nd low-level feature maps. The proposed attention fusion strat- 

gy can take full advantage of different scale context information. 

inally, a series of experiments are conducted on the COVID-19 

ataset to verify the effectiveness of the proposed scheme. The re- 

ults show that our method can obtain better performance for the 

egmentation of COVID-19 infections than the existing approaches. 

he main contributions of this paper are listed as follows. 

• An ESM is put forward to highlight low-level boundary features. 

The edge supervised information is incorporated into the initial 

stage of down-sampling, as the proposed edge supervised loss 

function allows to capture rich spatial information in various 

scales. 
• An ASSM is proposed to enhance high-level semantics from fea- 

ture maps with different scales. The mask supervised informa- 

tion is introduced into the later stage of down-sampling, thanks 
2 
to the corresponding auxiliary semantic loss function that is de- 

fined to explore sufficient semantic information from various 

scale infections on COVID-19 CT images. 
• An AFM is developed to fuse various scale feature maps from 

the up-sampling stage. An attention mechanism is utilized to 

reduce the semantic gaps between high-level and low-level fea- 

ture maps, so as to strengthen and supplement the lost detailed 

information in high-level representations. 
• A joint loss function is constructed by combining the edge 

supervised loss, auxiliary semantic supervised loss and fusion 

loss. It can guide the network achieving a deep collaborative 

supervision on edges and semantics, and prompting the fusion 

efficiency on multiple scale feature maps from different levels. 

This paper is organized as follows. Section 2 introduces the 

elated works. Section 3 describes details about the proposed 

ethods, including Edge Supervised Module (ESM), Auxiliary Se- 

antic Supervised Module (ASSM) and Attention Fusion Module 

AFM). Section 4 presents experiments, results and discussions, and 

ection 5 concludes this work. 

. Related works 

In this section, we provide a short review of previous studies on 

etwork models, edge supervision, multi-scale object recognition, 

nd attention mechanism. 

.1. Network models 

Deep network models are a kind of hierarchical feature learn- 

ng methods by learning multiple levels of representation to model 

omplex relationships among data, and higher-level features and 

oncepts are thus defined in terms of lower-level ones, and such 

 hierarchy of features is called a deep architecture [12] . Usually, 

he first layers will learn the low level features like intensity, color, 

ines, dots and curves, then the more the layers approach the out- 

ut layer, the more the layers will learn the high level features like 

bjects and shapes in a feature extracting pipeline. For example, 

rom AlexNet [13] , VGG [14] to ResNet [15] , the ability of feature

xtraction is becoming more and more powerful with the deep- 

ning of the network depth. Accordingly, the deeper networks can 

rovide a powerful feature extraction ability for semantic segmen- 

ation tasks, and can greatly improve segmentation accuracy. 

Since FCN [16] is proposed, other semantic segmentation net- 

orks attempt to improve this architecture by adding new mod- 

les to solve the problems regarding the lack of spatial and contex- 

ual information. For example, U-Net [11] is greatly improved only 

y adding the skip connection based on FCN. PSPNet [17] employs 

yramid pooling module to explore the global context information, 

nd it can improve the accuracy of target segmentation at differ- 

nt scales. Besides, DeepLabV3+ [18] combines the advantages of 

patial Pyramid Pooling (SPP) module and encoder-decoder struc- 

ure, and further explore the Xception model and apply the depth- 

ise separable convolution to both Atrous Spatial Pyramid Pooling 

ASPP) and decoder modules. PSANet [19] can capture pixel level 

elationship and relative position information in spatial dimension 

hrough convolution layer. In addition, EncNet [21] also introduced 

 channel attention mechanism to capture the global context. 

Although many advanced network structures have been 

merged for semantic segmentation tasks, U-Net and its deriva- 

ives are still the most popular architecture and have been widely 

pplied in the medical imaging community [27,37] . However, de- 

pite their outstanding overall performance in segmenting medical 

mages, the U-Net-based architecture seems to be lacking in cer- 

ain aspects. For example, although the high-level feature map can 

e optimized through the concatenation the feature maps of the 
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ow-level layers and the high-level layer by using skipping connec- 

ion, it is still very difficult to reduce the semantic gap between 

ow-level visual features and high-level semantic features. Thus, 

e select ResUNet as the backbone to attempt to exploit a novel 

egmentation architecture for the COVID-19 segmentation task in 

his work. 

.2. Edge supervision and multi-scale object recognition 

Edge information, as an important image feature, is drawing 

ore and more attention in deep learning community owing to 

he fact that edge information is conducive to the extraction of 

bject contour in segmentation tasks. For example, explicit edge- 

ttention are utilized to model the boundaries and enhance the 

epresentations in Fan et al. [6] . Wu et al. [22] proposed a novel

dge aware salient object detection method, and it passes mes- 

ages between two tasks in two directions, and refines multi-level 

dge and segmentation features. ET-Net [23] integrates edge de- 

ection and object segmentation into a deep learning network, and 

he edge attention representation is embedded to supervise the 

egmentation prediction. Normally, edge information can provide 

seful fine-grained constraints to guide feature extraction in se- 

antic segmentation tasks. However, high-level feature maps have 

ittle edge information, while low-level layers contain richer object 

oundaries. 

For the multi-scale object recognition problem, it is common 

ractice to exploit multiple levels of coarse and fine-grained se- 

antic features by adopting different network structures in com- 

uter vision. For example, the operations of convolution and pool- 

ng on the original image is used to obtain feature maps of dif- 

erent sizes, and it is similar to constructing pyramids in the fea- 

ure space of images. Feature Pyramid Networks (FPN) [24] is one 

f the most typical examples, and it adopts a top-down architec- 

ure with lateral connections for building high-level semantic fea- 

ure maps at all scales. It has been demonstrated a significant im- 

rovement as a generic feature extractor in detection tasks, and 

as been widely applied in different detection architectures, such 

s Faster R-CNN [25] and Mask R-CNN [26] . 

It is widely known that the low-level feature maps pay more at- 

ention to detail information, while the high-level lay much atten- 

ion to semantic information. More specifically, the encoded path- 

ay is mainly used for feature extraction, and there are hierar- 

hy and gradation for various feature. Because the spatial resolu- 

ion and the semantics can be decreased and strengthened along 

ith the deepening of down-sampling, respectively. Significantly, 

PN [24] and U-Net [11] both adopt encoder-decoder architecture, 

ut they are respectively applied in object detection and seman- 

ic segmentation. The main difference is that there are multiple 

rediction layers for various scale features in FPN [24] . Inspired 

y this, we attempt to exploit sufficient multi-scale context in- 

ormation from different levels of the encoder in this work. Low 

evel detailed feature maps can exploit rich spatial information, 

nd they could strengthen the boundaries of the infected regions; 

hile high-level semantic feature maps can endow position infor- 

ation, and they could locate the infected regions. 

.3. Attention mechanism 

Attention can be regarded as a mechanism, and it emphasizes 

he features that need attention through the context of feature 

aps. Normally, an attention mechanism is used to highlight the 

mportant context in the channel-wise or space-wise [7,8] , while 

uppressing the context information irrelevant to the content. For 

xample, Fu et al. [28] proposed Dual Attention Network (DAN), 

nd two attention modules were introduced to capture the spatial 
3 
ependence between any two positions in the feature maps. A sim- 

lar self-attention mechanism was used to capture the channel de- 

endence between any two channels, and the weighted sum of all 

hannel was utilized to update each channel. Huang et al. [29] pro- 

osed Criss-Cross Net (CCNet) to capture this important informa- 

ion in a more effective way, specifically, for each pixel, CCNet 

an obtain the context information on its crisscross path through 

 Criss-Cross attention module. Non-local operations, proposed by 

ang et al. [30] , can directly capture remote dependencies by cal- 

ulating the interaction between any two locations. Besides, an at- 

ention mechanism is also used to aggregate different levels of fea- 

ures to bridge the semantic gaps between low-level features and 

igh-level semantics. For example, Li et al. [31] proposed Gated 

ully Fusion(GFF) to fully fuse multi-level feature maps controlled 

y learned gate maps, and the novel module can bridge the gap 

etween high resolution with low semantics and low resolution 

ith high semantics. Inspired by this, we adopt an attention mech- 

nism to fuse various level feature maps, and the proposed AFM 

an reduce the semantic gaps between high-level and low-level 

eature maps, so as to strengthen and supplement the missing de- 

ailed information in high-level representations. 

. Methods 

In this section, we first present the proposed network architec- 

ure. Then we introduce in details the proposed three modules: 

SM, ASSM and AFM. 

.1. Proposed network architecture 

As mentioned above, U-Net [11] and FPN [24] both have a sim- 

lar encoder-decoder structure for multi-scale object vision tasks, 

onsisting of a contracting path to capture context and a sym- 

etric expanding path that enables precise localization. While U- 

et [11] creates a path for information propagation allowing sig- 

als propagate between low and high levels by copying low level 

eatures to the corresponding high levels. Despite achieving good 

egmentation performance in U-Net and its variations, however, 

he edge information and channels would decrease and increase 

long with down-sampling of the contracting path, respectively. 

oth cases can lead to effective information missing, thereby not 

xploring sufficient information from full scales so as to suffer seg- 

entation performance degradation. While FPN [24] can overcome 

hese drawbacks to retain multi-scale contextual information by 

sing multiple prediction layers: one for each up-sampling layer. 

ased on this idea, we propose a novel segmentation scheme for 

he infections of COVID-19. 

Fig. 2 illustrates the proposed network architecture. Firstly, we 

ollaboratively enhance the supervised information by introducing 

dge and semantic information into the encoding stage. Note that 

he initial stages are used for the edge supervision, while the later 

tages for the semantic supervision. They occupy the whole down- 

ampling together, more precisely, the sum of the low-level and 

igh-level layers is equal to the total layers of the encoder. Espe- 

ially, low-level feature maps from shallow layers are with high 

esolution, but with limited semantics, whereas high-level feature 

aps from deep layers have low spatial resolution without detailed 

nformation (like object boundaries). When various levels are se- 

ected to enhance the supervised information, there is a trade-off

etween edge supervision and semantic supervision, thus we call it 

collaborative supervision” (“Co-supervision”). Then we fuse multi- 

cale feature maps of different levels from the decoding stage in an 

ncoder-decoder framework (like U-Net). Considering the fact that 

ow level detailed feature maps have high resolution and can cap- 

ure rich spatial information like object boundaries, we design an 

SM to highlight low-level boundary features by incorporating the 
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Fig. 2. An Illustration of the overall network architecture. The proposed architecture comprises of ASSM, ESM and AFM based on encoder-decoder structure. (1) ESM is used 

to further highlight the low-level features in the initial shallow layers of the encoder, and it can capture more detailed information like object boundaries. (2) While ASSM 

is employed to strengthen high-level semantic information by integrating object mask supervised information into the later stages of the encoder. (3) Finally, AFM is utilized 

to fuse multi-scale feature maps of different levels in the decoder. 
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dge supervised information into the initial stage (like S 1 and S 2 in 

ig. 2 ) of down-sampling in the encoder. While high-level seman- 

ic feature maps embody position information like object concepts, 

hus we present an ASSM to strengthen high-level semantic infor- 

ation by integrating object mask supervised information into the 

ater stage (like S 3 ∼ S 5 in Fig. 2 ). Finally, the obtained various scale

eature maps from the up-sampling stage are fused by adopting an 

ttention mechanism to achieve good segmentation performance 

or infections of COVID-19. 

.2. Edge supervised module (ESM) 

Many studies [22,23] show that the edge information can pro- 

ide effective constraints to the feature extraction in the segmenta- 

ion task. To supplement the missing edge information along with 

own-sampling, we propose ESM to further highlight the object 

oundary features in the low-level layers. Because feature maps of 

ow level from shallow layers are with high resolution and detailed 

nformation (including edge information), and these detailed infor- 

ation are easily lost during the initial stage of the down-sampling 

rocess, the proposed ESM can capture more detailed information 

ike object boundaries. Specifically, we can guide the network to 

xtract edge features from the initial stages like S 1 and S 2 (shown 

n Fig. 2 ) by defining edge supervised loss function. To this end, 

he output feature maps from the initial stage are firstly resized to 

he size H × W of the original image by using bilinear interpolation 

p-sampling. Then the obtained large feature maps of each layer in 

SM are reduced to a feature map by using 1 × 1 convolution oper- 

tion. Finally each pixel value is converted to a probability by using 

igmoid function σ (·) (shown in Fig. 3 a), and an edge prediction 

mage with H × W is obtained. Accordingly, the edge supervised 

oss function is given based on Dice coefficient as follows. 

 edge = 1 − 2 ×
l ∑ 

i =1 

ζi ( S 
i 
edge 

∩ G edge ) 

(S i 
edge 

+ G edge ) 
(1) 

here S i 
edge 

is the edge prediction image obtained by using bilinear 

nterpolation up-sampling in the i th stage. G edge is the correspond- 

ng Ground Truth (GT) of edge image, which is obtained by gen- 

rating edge GT from the segmentation mask. l is the number of 

tages used for edge supervised in the ESM. ζi ( i = 1 , . . . , l) is the

eight coefficient of the i th stage. By using skip connections and 
4 
FM, the edge features in the high-level feature maps can also be 

trengthened. 

.3. Auxiliary semantic supervised module (ASSM) 

For the multi-scale object segmentation, the multi-level loss 

unction is used to build receptive fields of different sizes for dif- 

erent layers in the network. For example, FPN [24] uses multi- 

evel auxiliary loss to detect objects at different scales, and it is a 

reat breakthrough in multi-scale object detection task. Inspired by 

his, we develop an ASSM based on the similar strategy in our net- 

ork. Specifically, the semantic information is gradually strength- 

ned along with the down-sampling process in the encoder, and 

he high-level feature map has rich semantics but low spatial res- 

lution without detailed information. Different layers contain dif- 

erent level semantic features according to the feature hierarchy of 

he contracting path. Thereby we can define an auxiliary semantic 

oss function to reduce the semantic gaps between high-level and 

ow-level feature maps in the later stage (i.e., S 3 ∼ S 5 ) of the en-

oder. Eventually, low-level semantic features can be strengthened 

y using multi-scale skip connections and AFM, and it can also re- 

uce the background noise in the low-level feature maps. 

Similar to the above steps in ESM, we can obtain one coarse 

egmented image with the size of H × W and the probability of 

ach pixel through a series of operations, such as bilinear inter- 

olation, 1 × 1 convolution, and Sigmoid function σ (·) (shown in 

ig. 3 b). Then the auxiliary semantic loss function is defined based 

n Dice coefficient as follows. 

 semantic = 1 − 2 ×
5 ∑ 

i = l+1 

ω i ( S 
i 
mask 

∩ G mask ) 

(S i 
mask 

+ G mask ) 
(2) 

here S i 
mask 

and G mask are the obtained coarse segmented image 

n the i th stage of the Encoder and the Ground Truth (GT) of seg- 

entation mask, respectively. ω i ( i = l + 1 , . . . , 5 ) is the weight co-

fficient of the i th stage. 

.4. Attention fusion module (AFM) 

As mentioned above, high-level features are very efficient in se- 

antic segmentation tasks. However, the high-level feature maps 

asily lead to inferior results for small or thin objects owing to the 
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Fig. 3. An illustration of ESM and ASSM. Firstly, the low resolution feature maps from the stage S i are resized to the same size H × W with the input image by using 

bilinear interpolation up-sampling. Then all high resolution feature maps are reduced to a feature map by using 1 × 1 convolutions. Finally each pixel value of the obtained 

feature map is converted to a probability by using Sigmoid function σ (·) , and the prediction image of the S i stage is obtained. (a) ESM: the edge supervision is achieved 

by comparing between the obtained edge prediction image S i 
edge 

and the corresponding edge Ground Truth (GT) G edge based on Eq.(1). (b) ASSM: the auxiliary semantic 

supervision is achieved by comparing between the obtained coarse segmented image S i 
mask 

and the corresponding Ground Truth (GT) of segmentation mask G mask based on 

Eq.(2). 
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Fig. 4. An illustration of the attention mechanism. X u 
i 

represents the up-sampling 

intermediate result by bilinear interpolation for the feature map X i , and its 2D size 

is the same size with the input image. 
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act that the operations of convolution and pooling can cause the 

etailed information missing, thereby high-level feature maps have 

oarse resolution. To compensate the lost detailed information in 

igh-level representations, it is necessary to import low level fea- 

ures. However, the full-scale skip connections can only incorpo- 

ate low-level details with high-level semantics from feature maps 

n different scales of the same level, and the semantic gaps exist- 

ng among various levels hampers the effectiveness of the semantic 

egmentation. Thus we propose the AFM to fuse multi-scale fea- 

ure maps of different levels by using an attention mechanism to 

trengthen and supplement the lost detailed information in high- 

evel representations. 

Gated Fully Fusion(GFF) [31] can selectively fuse features from 

ultiple levels using gates in a fully connected way, and add 

eights to each spatial position by using skip connection. Inspired 

y this idea, an attention mechanism is incorporated into the AFM 

y aggregating different level features, aiming at reducing the se- 

antic gaps between low-level features and high-level features. 

he corresponding attention mechanism is illustrated in Fig. 4 . In 

eneral, we can directly obtain the segmentation maps from the 

op feature map X 1 (∈ R C×H×W , where c, h and w are the channel

umber, height and width, respectively) of the expansive path in 

he standard U-Net. The X 1 has high spatial resolution because the 

utputs need to be with the same resolution as the input image, 

ut actually, multiple down-sampling and up-sampling operations 

ake the deep network cause mistake and loss in the detailed in- 

ormation. As well as strengthening the top feature map X 1 , there- 

ore, we can aggregate feature maps of other levels (i.e., X 2 ∼ X 5 ) 

o supplement the lost detailed information caused by the filters 

r pooling operations. 

More precisely, we can obtain a confidence map P 1 (∈ R C×H×W ) 

hrough the attention block (AB) of the top feature map X 1 . The 

oints with high confidence have a greater possibility to retain the 

riginal feature map values, and vice versa. Similarly, the lost de- 

ailed information is represented by the confidence map 1 − P 1 , in 
5 
hich the higher the value, the less object information it contains. 

hus, we can strengthen the top feature map X 1 through the dot 

roduct between the confidence map P 1 and X 1 , and can supple- 

ent the lost detailed information by using dot product between 

he confidence map 1 − P 1 and the sum of other feature maps. The 

rocedure of the attention block is illustrated in Fig. 5 , and the fi-

al prediction result S P can be defined as follows. 

 P = X 1 + Y 1 + (1 − P 1 ) ·
5 ∑ 

i =2 

Y i (3) 

here Y i is the output by using the attention block to process the 

orresponding X i . While X i is firstly up-sampled to the same size 

ith the input image by bilinear interpolation. Then Y i can be ob- 

ained by processing the up-sampling intermediate result X u based 
i 
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Fig. 5. The procedure of the attention block. The color bar represents the trends of confidence values, and the red and blue denote 1 and 0, respectively. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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n the attention block, and it is defined as follows. 

 i = �A (X i ) = P i · X 

u 
i (4) 

here �A (·) is the attention function. 

The specific process is as follows. 

1. Each up-sampling feature map ( X i ) is processed through an at- 

tention block. 

2. After an 1 × 1 convolution operation, the channels are reduced 

to 64, and we can obtain the i th level feature maps. 

3. Then the resolution is resized to H × W by using bilinear inter- 

polation. 

4. After the operation of a convolution and Sigmoid function σ (·) , 
we can obtain the confidence output Y i by using a dot prod- 

uct Y i = P i · X u 
i 

. Note that the top feature map X 1 is selected as

the main prediction, while other confidence output only as the 

supplement of Y 1 = �A (X 1 ) . When P 1 is small, it means that

the corresponding confidence is low, and thereby we can com- 

pensate the lost information by doing a dot product between 

( 1 − P 1 ) and the sum of the confidence outputs of other layer

feature maps X i ( i = 2 , . . . , 5 ). 

5. Finally, the final prediction result S p is obtained by sum- 

ming the residuals of X 1 . The specific process is shown in 

Algorithm 1 . 

lgorithm 1 Fusion algorithm. 

equire: Feature map while up-sampling X i (i ∈ [1,…,5]) 

nsure: Prediction S p 
1: Adopt 1 × 1 convolution on X i to change its channel number to 

64 

2: Resize the above obtained feature maps to the original image 

size of H × W by using up-sample, and obtain X u 
i 

3: Adjust X u 
i 

to one channel by using 3 × 3 convolution 

4: Generate the confidence map P i by adopting Sigmoid function 

σ (·) 
5: Obtain Y i by doing a dot product between X u 

i 
and P i in each 

channel, and perform the sums 
∑ 5 

i =2 Y i 
6: Do a dot product between ( 1 − P 1 ) and 

∑ 5 
i =2 Y i , and obtain (1 −

P 1 ) 
∑ 5 

i =2 Y i 
7: Obtain the prediction S p by calculating the summation of X 1 , Y 1 

and (1 − P 1 ) 
∑ 5 

i =2 Y i 
8: return S p 

The loss function for fusion is defined as follows: 

 f usion = 1 − 2 × ( S p ∩ G ) 

S p + G 

(5) 

here G represents the ground truth of COVID-19. 

 total = θL edge + βL semantic + L f usion (6) 

where θ and β are weight coefficients. 

Considering the fact that there would be negative values in the 

ategory imbalance case when using the cross-entropy loss func- 

ion. Therefore, we select Dice loss to supervise the predictions 

nd labels in our experiments. To achieve deep fusions and super- 

isions for the features of different level, the overall loss function 

ntegrates ESM, ASSM and AFM, given as Eq. (6) . 
6 
. Experiments 

.1. Datasets and baselines 

We collect the COVID-19 segmentation dataset from two 

ources. One is from [32] , including more than 900 CT images, 

mong them about 400 slices with infections. Another is from [33] , 

nd it contains 3D CT images of 20 patients, and we can obtain 

686 images by converting from 3D volumes into 2D slices. Due to 

he small datasets, the two sources are put together in a total of 

 4 49 2D slices, among them 40 0 0 slices for training sets and 449

lices for test sets, respectively. The GT contains four categories: 

 ∼ 3 represent background, ground glass, consolidation and plural 

ffect, respectively. Owing to the imbalance of infection categories 

n the dataset, for example, only few slices contain plural effect 

nfection, we take all types of infection as one type. Considering 

he limitation of GPU memory, we resize the image resolution of 

12 × 512 to 256 × 256 by bilinear interpolation, then Z -score is 

sed for data normalization. Besides, to further verify the effective- 

ess and generalization ability of the proposed method, we select 

hree additional public COVID-19 datasets for testing and compari- 

on, including MosMedData [42] , UESTC-COVID-19 [41] and COVID- 

hestCT [43] . MosMedData is a dataset of 100 axial CT images from 

ore than 40 patients with COVID-19, including 829 slices with 

12 × 512 size (see Morozov et al. [42] for details), and UESTC- 

OVID-19 contains CT scans (3D volumes) of 50 patients diagno- 

ized with COVID-19 from 10 different hospitals (see Wang et al. 

41] for details). While COVID-ChestCT is a small dataset, and it 

ontains 20 CT scans of patients diagnosed with COVID-19 as well 

s segmentations of lungs and infections made by experts (see Co- 

en et al. [43] for details). 

We select ResUNet as the backbone of the proposed network, 

n which the down-sampling of U-Net is replaced with ResNet. To 

erify the effectiveness of the proposed scheme, we use a series of 

opular segmentation models for comparison in the medical image 

egmentation area, such as U-Net [11] , UNet++ [9] , and Attention 

-Net [34] , and we compare our methods with two cutting-edge 

odels from the semantic segmentation: DeepLabV3+ [18] and 

SPNet [17] . 

.2. Evaluation metrics and experimental settings 

We adopt three metrics to evaluate our methods, such as Dice 

imilarity coefficient, Sensitivity (Sens.), Precision (Prec.). Besides, 

e also introduce three golden metrics to verify the detection and 

egmentation performance from the object detection field, such 

s Structure Measure [35] , Enhance-alignment Measure [36] , and 

ean Absolute Error. In our evaluation, we select S p as the fi- 

al output prediction, and measure the similarity/dissimilarity be- 

ween S p and ground-truth G , which can be formulated as follows. 

• Dice similarity coefficient: it is used to measure the proportion 

of intersection between S p and G , which is defined as follows. 

Dice = 

2 × ( S p ∩ G ) 
(7) 
S p + G 
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Table 1 

Hyperparameter setting. 

Parameters Values 

Input image size H × W 256 × 256 

batch_size 8 

learning rate 1 e − 4 

Early stopping 25 epochs 

θ 0.8 

β 0.4 

ζi ( i = 1 , . . . , l) 1 

ω i ( i = l + 1 , . . . , 5 ) 1 
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• Structure Measure (S α): it is used to measure the structural 

similarity between a prediction S p and ground-truth G , which 

is more consistent with the human visual system. 

S α = (1 − α) × S o (S p , G ) + α × S r (S p , G ) , (8)

where S o and S r are the object-aware similarity and region- 

aware similarity, respectively. α is a balance factor between S o 
and S r . We report S α using the default setting ( α = 0.5) sug-

gested in the original paper. 
• Sensitivity ( Sens. ): it is used to measure the percentage of pos- 

itive samples in the total number of patients, or the probability 

of no missed diagnosis. The formulation is given as follows. 

Sens. = 

S p ∩ G 

G 

(9) 

• Precision ( P rec. ): it is used to measure the percentage of sam- 

ples with negative test in the total number of healthy people, or 

the probability of not misdiagnosing. The formulation is given 

as follows: 

P rec. = 

S p ∩ G 

S p 
(10) 

• Enhanced-alignment Measure ( E mean 
φ

): it is a recently proposed 

metric for evaluating both local and global similarity between 

two binary maps. The formulation is given as follows: 

E φ = 

1 

w × h 

w ∑ 

x 

h ∑ 

y 

φ(S p (x, y ) , G (x, y )) (11) 

where w and h are the width and height of ground-truth G , and

(x, y ) denotes the coordinate of each pixel in G . Symbol φ is the

enhanced alignment matrix. We obtain a set of E φ by convert- 

ing the prediction S p into a binary mask with a threshold from 

0 to 255. In our experiments, we report the mean of E ξ com- 

puted from all the thresholds. 
• Mean Absolute Error ( MAE): it is used to measure the pixel- 

wise error between S p and G , which is defined as: 

MAE = 

1 

w × h 

w ∑ 

x 

h ∑ 

y 

| S p (x, y ) − G (x, y ) | . (12)

For the hyper-parameters in the experiments is given in Table 1 

y try-and-error, respectively. Note that the learning rate is initially 

elected as 1e-4 −, then is reduced by a factor of 0.5 when the 

est loss is not improved within 25 epoch. Early stopping is used 

o avoid over-fitting. All experiments are conducted on a desktop 

omputer with an E3-1230 v5 3.40 GHz 8-core processor, and with 

 GeForce GTX 1070 graphics card. A GPU implementation accel- 

rates the forward propagation and back propagation routines by 

sing the Adam optimizer under the Pytorch framework. Each ex- 

eriment is run three times, then its average and standard devia- 

ion ± are obtained. 
7 
.3. Experimental results 

.3.1. Quantitative results 

A series of comparison experiments are implemented on our 

ataset, and the results are shown in Table 2 . From Table 2 , the

roposed method can achieve the best performances among these 

ethods in Dice , Sens. and P rec. . Thereinto, our method has im- 

roved by around 4.4% and 1.44% in the main metric—Dice coef- 

cient compared with U-Net [11] and Inf-Net [6] , respectively. In 

articular, UNet++ [9] and Attention U-Net [34] represent the best 

-Net-based methods in the medical image processing area, while 

nf-Net [6] , CE-Net [38] and CPFNet [40] are the newest and best 

ethods for the segmentation of medical images. It suggests that 

he proposed scheme is effective and competitive, and can effec- 

ively fuse the multi-scale and multi-level features to accurately 

chieve the COVID-19 infection segmentation. 

Besides, we further analyze the influence of edge supervision 

n different levels on segmentation performance by adding or re- 

ucing level edge supervision in the low-level features. To facili- 

ate the analysis, ResUNet with Co-supervision and Fusion Model 

ResUNet_C i F) represents the first i levels (i.e., S 1 , . . . , S i ) in the

ow level to use ESM, while the rest (i.e., S i +1 , . . . , S n ) adopt ASSM

n the Co-supervision, where n is the number of down-sampling 

 n = 5 here). The results is illustrated in Table 3 , and it is obvious

hat Dice coefficient firstly rises and then declines along the first 

evel number i from 1 to 5. When i = 2 (i.e., ResUNet_C 2 F), the

roposed method can obtain the best segmentation performance. 

t means that the features of low-level boundary and high-level 

emantic can both be strengthened as the first level number i in- 

reases and reduces, respectively. When i = 2 , there is a trade-off

etween the number of low-level and high-level (i.e., the use of 

ontext and localization accuracy), consequently ResUNet_C 2 F can 

urpass other ResUNet_C i F in most metrics, such as Dice , MAE, E φ
nd S α . More precisely, the proposed ESM and ASSM can incorpo- 

ate low-level details with high-level semantics from feature maps 

n different levels by using AFM. 

.3.2. Qualitative results 

To further demonstrate the effectiveness of the proposed 

cheme, we visualize the prediction results of different networks. 

s shown in Fig. 6 , our method can remarkably outperform the 

aseline methods in the lung infection segmentation. Specifically, 

ur segmentation results have much less mis-segmented tissues, 

hile there are a lot of lossing and improper segmentation in the 

aseline U-Net and other methods. For the infection edge marked 

ith a red box, for instance, our method can obtain a complete 

dge, and it is much closer to the real label in edge detail, which 

enefits from the more detailed edge information provided by the 

roposed ESM. Besides, from the regions marked by the blue box, 

ur method can avoid over-segmentation, under-segmentation and 

ncorrect segmentation efficiently. Especially in the 4 th rows, only 

ur method and Deeplabv3+ can correctly detect the small infec- 

ion (marked the blue box). It can be also observed obviously that 

ur method is better than Deeplabv3+ in the edge details of large 

argets (marked the red box) because our method can provide dif- 

erent sizes of receptive fields and have good segmentation perfor- 

ance for different scale objects. 

Along the down-sampling process in U-Net, edge feature infor- 

ation becomes less and less, while semantic one becomes richer 

nd richer. For further verification, we visualize the feature maps 

f different levels (i.e., from S 1 to S 5 ) in ResUNet_C 5 F. As shown

n Fig. 7 , the feature maps of low-level output ( S 1 and S 2 ) contain

ore details, and the feature map in S 3 is the closest to the edge

T. With the deepening of down-sampling, edge feature informa- 

ion becomes less obvious. In the back propagation, we can extract 

ore semantic information from the feature maps of high-level, as 
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Table 2 

Comparisons between different networks on our dataset. Bold black text represents the best results. 

Methods Dice (%) ↑ Sens. (%) ↑ Prec. (%) ↑ MAE(%) ↓ E φ (%) ↑ S α (%) ↑ 
U-Net [11] 85 . 56 ± 0 . 33 85 . 38 ± 1 . 53 85 . 76 ± 0 . 89 0 . 72 ± 0 . 01 94 . 21 ± 0 . 02 81 . 23 ± 0 . 23 

UNet + [9] 86 . 71 ± 1 . 25 90 . 27 ± 0 . 61 88 . 30 ± 1 . 05 0 . 60 ± 0 . 02 94 . 50 ± 0 . 63 84 . 61 ± 1 . 00 

Attention U-Net [34] 87 . 40 ± 0 . 26 89 . 48 ± 0 . 49 89 . 88 ± 0 . 53 0 . 58 ± 0 . 03 94 . 74 ± 0 . 87 84 . 71 ± 0 . 87 

PSPNet [17] 87 . 45 ± 0 . 31 88 . 32 ± 1 . 25 89 . 89 ± 1 . 11 0 . 60 ± 0 . 05 93 . 84 ± 0 . 27 83 . 81 ± 0 . 20 

Deeplabv3 [18] 87 . 81 ± 0 . 19 89 . 24 ± 0 . 96 90 . 72 ± 0 . 66 0 . 58 ± 0 . 02 95 . 58 ± 0 . 22 86 . 03 ± 0 . 95 

Inf-Net [6] 88 . 49 ± 0 . 17 90 . 07 ± 0 . 35 90 . 39 ± 0 . 18 0 . 55 ± 0 . 01 95 . 70 ± 0 . 24 86 . 55 ± 0 . 09 

SCRN [22] 86 . 24 ± 0 . 08 83 . 64 ± 0 . 36 89 . 65 ± 0 . 59 0 . 60 ± 0 . 015 95 . 02 ± 0 . 40 84 . 09 ± 0 . 26 

F3Net [20] 87 . 99 ± 1 . 45 85 . 14 ± 2 . 23 91 . 08 ± 0 . 17 0 . 58 ± 0 . 025 93 . 51 ± 0 . 63 86 . 35 ± 2 . 03 

DANet [28] 88 . 94 ± 0 . 29 85 . 48 ± 2 . 74 90 . 50 ± 0 . 53 0 . 57 ± 0 . 015 94 . 11 ± 0 . 91 86 . 90 ± 1 . 33 

ACFNet [39] 83 . 25 ± 0 . 18 83 . 88 ± 0 . 10 83 . 06 ± 0 . 25 0 . 34 ± 0 . 001 85 . 21 ± 0 . 15 90 . 62 ± 0 . 05 

CE-Net [38] 81 . 49 ± 0 . 75 84 . 21 ± 0 . 85 84 . 18 ± 0 . 34 0 . 30 ± 0 . 005 85 . 06 ± 0 . 26 92 . 00 ± 0 . 10 

CPFNet [40] 85 . 19 ± 0 . 14 84 . 66 ± 1 . 32 85 . 22 ± 1 . 05 0 . 31 ± 0 . 002 86 . 38 ± 0 . 07 92 . 09 ± 0 . 20 

ResUNet_C 2 F( Ours ) 89 . 93 ± 0 . 09 90 . 29 ± 0 . 66 91 . 91 ± 0 . 97 0 . 52 ± 0 . 01 95 . 69 ± 0 . 10 86 . 75 ± 0 . 07 

Table 3 

The results of different numbers of edge supervised on our dataset. Bold black text represents the best results. 

Methods Dice (%) ↑ Sens. (%) ↑ Prec. (%) ↑ MAE(%) ↓ E φ (%) ↑ S α (%) ↑ 
ResUNet_C 1 F 89 . 16 ± 0 . 49 88 . 03 ± 1 . 49 92 . 08 ± 1 . 05 0 . 56 ± 0 . 03 95 . 27 ± 0 . 12 85 . 59 ± 0 . 80 

ResUNet_C 2 F 89 . 93 ± 0 . 09 90 . 29 ± 0 . 66 91 . 91 ± 0 . 97 0 . 52 ± 0 . 01 95 . 69 ± 0 . 10 86 . 75 ± 0 . 07 

ResUNet_C 3 F 89 . 44 ± 0 . 14 90 . 15 ± 0 . 88 91 . 90 ± 1 . 13 0 . 55 ± 0 . 01 95 . 30 ± 0 . 49 85 . 41 ± 0 . 09 

ResUNet_C 4 F 89 . 40 ± 0 . 33 90 . 66 ± 0 . 45 91 . 12 ± 0 . 92 0 . 58 ± 0 . 02 95 . 32 ± 0 . 24 85 . 35 ± 0 . 43 

ResUNet_C 5 F 88 . 33 ± 0 . 89 90 . 28 ± 0 . 67 90 . 05 ± 0 . 45 0 . 58 ± 0 . 06 95 . 05 ± 1 . 30 85 . 29 ± 1 . 58 

Table 4 

Ablation experiments on our dataset. Bold black text represents the best 

results. 

Baseline ESM ASSM ASSM 

∗ ESM 

∗ AFM Dice (%) ↑ 
ResUnet 85 . 96 ± 0 . 03 √ 

87 . 08 ± 0 . 45 √ 

87 . 91 ± 0 . 83 √ 

87 . 59 ± 1 . 07 √ √ 

88 . 33 ± 0 . 89 √ √ 

88 . 70 ± 0 . 25 √ √ √ 

89 . 93 ± 0 . 09 √ 

87 . 17 ± 0 . 58 √ 

86 . 47 ± 0 . 46 √ √ 

87 . 31 ± 0 . 58 √ √ 

87 . 99 ± 0 . 36 √ √ √ 

88 . 86 ± 0 . 31 √ √ √ 

86 . 95 ± 0 . 37 √ √ √ 

85 . 19 ± 0 . 23 √ √ √ 

85 . 55 ± 0 . 47 √ √ √ 

85 . 11 ± 0 . 09 √ √ √ √ √ 

85 . 63 ± 0 . 51 
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hown in S 5 . It demonstrates that our ESM in low-level and ASSM 

n hige-level are very efficient to deal with a such difficult segmen- 

ation. 

.4. Ablation experiments 

To further analyse and test the validity of the proposed mod- 

les, a series of comparison experiments are conducted on our 

ataset by using various combinations among ESM, ASSM and 

FM based on the baseline ResUNet. The experimental results are 

hown in the third row of Table 4 , and each module can im-

rove independently the Dice coefficient of infection segmentation. 

hereinto, compared with the baseline ResUNet without any other 

odules, ASSM can obtain independently the greatest performance 

mprovements, followed by AFM. While for various combinations 

etween ESM, ASSM and AFM, they can also outperform their sep- 

rate modules, and the combination of ASSM and AFM can ob- 

ain slightly better performance than that of ESM and AFM. Finally, 

he combination of the three modules can obtain the best perfor- 

ance, the reason is that the integration can take full advantage 
8 
f them and obtain the optimal segmentation effect. Our network 

an be generalized for other segmentation applications due to the 

ffectiveness of its architecture. 

To test the effects of the proposed modules in the decoder, 

SM and ASSM are applied separately or jointly in the up-sampling 

ath. For convenience, ∗ indicates the corresponding modules and 

tages in the up-sampling path (shown in Fig. 2 ). Owing the sym- 

etric structure between the encoder and decoder, ESM and ASSM 

re symmetrically placed in the low level (i.e., S ∗1 to S ∗2 ) and high

evel (i.e., S ∗
3 

to S ∗
5 
) of the up-sampling path, respectively. The ex- 

erimental results are shown in the fourth row of Table 4 . Com- 

ared with the baseline method, the Dice performance can be 

mproved in certain extent when these modules are separately 

r jointly adopted in up-sampling path, particularly the combi- 

ation of the three modules can obtain the second best seg- 

entation performance. However, the obtain performance in the 

p-sampling path is slightly worse than that of the correspond- 

ng down-sampling path in general. It means that the proposed 

o-supervision scheme can both guide the network learning the 

eatures of edges and semantics in the down-sampling and up- 

ampling paths, but the effect would be more appreciable when 

he supervision modules is applied in the down-sampling path. 

he reason is that the levels of the down-sampling path contain 

icher primitive feature information than those of the up-sampling 

ath owing to the encoder close to the original input data, while 

he edge and semantic information exist more or less some loss 

nd noise when reconstructing a higher resolution layers by using 

ilinear interpolation up-sampling. Accordingly, the supervision in 

he levels of the down-sampling path is more stronger than that of 

he up-sampling path. 

However, interestingly, the segmentation performance is even 

ecreased compared with the baseline method when the pro- 

osed Co-supervision scheme are simultaneously applied in the 

own-sampling and up-sampling paths, and the fourth row of 

able 4 shows the results. Except the combination between ESM, 

SM 

∗ and AFM, all combinations between the down-sampling and 

p-sampling paths can obtain poorer segmentation performance 

han the baseline method. While the combination between ESM, 

SM 

∗ and AFM can increase by about 1% over the baseline method. 

he most probable cause is the conflict and interference of the Co- 
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Fig. 6. Visual qualitative comparison of lung infection segmentation results among U-Net, PSPNet, DeepLabv3+, Inf-Net and the proposed method. Column 1: the original CT 

image; Column 2: U-Net; Column 3: PSPNet; Column 4: DeepLabv3+; Column 5: Inf-Net; Column 6: our method; Column 7: the corresponding ground truth (GT). 

Fig. 7. Visualization of each stage supervised by ESM. Column 1: the original CT image; Columns 2 to 6: S 1 to S 5 ; Column 7: the corresponding edge ground truth (GT). 
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upervision between the down-sampling and up-sampling paths. 

or example, the down-sampling path (i.e., encoder) is used to en- 

ode the input image into feature representations at multiple dif- 

erent levels, thereby capturing the context of the image like edge 

etail information. While the up-sampling path (i.e., decoder) is to 

emantically project the discriminative features (lower resolution) 
9 
earned by the encoder onto the pixel space (higher resolution) to 

et a precise localization. Correspondingly, the loss function is to 

ut more emphasis on edge details in the encoder path, while to 

ighlight localization information for the decoder path. But all the 

eature maps of the decoder come from the encoder by concate- 

ating and up-sampling, which results in the conflict and interfer- 
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Table 5 

The results of different fusion methods on our dataset. 

Methods Dice (%) ↑ Sens. (%) ↑ Prec. (%) ↑ MAE(%) ↓ E φ (%) ↑ S α(%) ↑ 
Add 83 . 59 ± 2 . 14 85 . 16 ± 1 . 91 81 . 07 ± 0 . 83 0 . 85 ± 0 . 13 93 . 66 ± 0 . 10 80 . 12 ± 0 . 84 

Concatenate 86 . 75 ± 1 . 38 87 . 00 ± 0 . 92 86 . 93 ± 1 . 03 0 . 64 ± 0 . 08 94 . 39 ± 1 . 04 84 . 12 ± 1 . 27 

Attention 87 . 59 ± 1 . 07 88 . 04 ± 1 . 12 87 . 18 ± 1 . 36 0 . 59 ± 0 . 05 95 . 05 ± 1 . 30 83 . 89 ± 1 . 21 
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Table 6 

Performance comparisons between different methods on MosMedData. Bold 

black text represents the best results. 

Methods Dice (%) ↑ Sens. (%) ↑ MAE(%) ↓ 
U-Net [11] 80 . 39 ± 9 . 865 64 . 32 ± 19 . 197 8 . 26 ± 10 . 959 

UNet + [9] 87 . 27 ± 2 . 102 74 . 80 ± 7 . 508 1 . 60 ± 2 . 223 

Attention U-Net [34] 87 . 42 ± 0 . 395 81 . 92 ± 3 . 566 0 . 30 ± 0 . 059 

PSPNet [17] 82 . 38 ± 1 . 048 79 . 11 ± 2 . 323 0 . 37 ± 0 . 040 

Deeplabv3 [18] 83 . 70 ± 1 . 166 80 . 01 ± 0 . 350 0 . 34 ± 0 . 026 

Inf-Net [6] 78 . 64 ± 0 . 390 78 . 17 ± 4 . 277 0 . 44 ± 0 . 015 

SCRN [22] 87 . 13 ± 0 . 070 82 . 42 ± 3 . 957 0 . 26 ± 0 . 008 

F3Net [20] 83 . 66 ± 0 . 337 82 . 58 ± 1 . 121 0 . 33 ± 0 . 006 

DANet [28] 84 . 84 ± 4 . 435 70 . 65 ± 8 . 948 2 . 94 ± 4 . 268 

ACFNet [39] 79 . 40 ± 1 . 114 79 . 07 ± 3 . 978 0 . 42 ± 0 . 023 

CE-Net [38] 86 . 11 ± 0 . 371 76 . 17 ± 0 . 121 0 . 28 ± 0 . 012 

CPFNet [40] 86 . 79 ± 0 . 266 73 . 50 ± 4 . 910 0 . 42 ± 0 . 101 

ResUNet_C 2 F( Ours ) 87 . 43 ± 0 . 165 85 . 64 ± 3 . 013 0 . 253 ± 0 . 006 

Table 7 

Performance comparisons between different methods on UESTC-COVID-19. 

Bold black text represents the best results. 

Methods Dice (%) ↑ Sens. (%) ↑ MAE(%) ↓ 
U-Net [11] 85 . 48 ± 0 . 125 75 . 90 ± 3 . 466 0 . 47 ± 0 . 060 

UNet + [9] 85 . 13 ± 0 . 296 76 . 41 ± 1 . 636 0 . 47 ± 0 . 010 

Attention U-Net [34] 84 . 62 ± 0 . 539 77 . 04 ± 2 . 484 0 . 50 ± 0 . 035 

PSPNet [17] 82 . 67 ± 0 . 248 76 . 45 ± 1 . 246 0 . 56 ± 0 . 006 

Deeplabv3 [18] 80 . 13 ± 1 . 212 70 . 88 ± 2 . 573 0 . 63 ± 0 . 049 

Inf-Net [6] 83 . 26 ± 0 . 440 77 . 45 ± 1 . 810 0 . 54 ± 0 . 015 

SCRN [22] 83 . 78 ± 0 . 402 77 . 75 ± 2 . 949 0 . 52 ± 0 . 017 

F3Net [20] 83 . 58 ± 0 . 974 78 . 56 ± 1 . 178 0 . 53 ± 0 . 026 

DANet [28] 85 . 40 ± 0 . 745 79 . 40 ± 2 . 175 0 . 47 ± 0 . 026 

ACFNet [39] 84 . 31 ± 0 . 435 79 . 83 ± 1 . 799 0 . 50 ± 0 . 020 

CE-Net [38] 85 . 45 ± 0 . 420 77 . 38 ± 7 . 962 0 . 47 ± 0 . 016 

CPFNet [40] 85 . 36 ± 0 . 182 77 . 35 ± 1 . 151 0 . 47 ± 0 . 015 

ResUNet_C 2 F( Ours ) 85 . 52 ± 0 . 081 79 . 46 ± 2 . 286 0 . 47 ± 0 . 006 

Table 8 

Performance comparisons between different methods on COVID-ChestCT. 

Bold black text represents the best results. 

Methods Dice (%) ↑ Sens. (%) ↑ MAE(%) ↓ 
U-Net [11] 71 . 86 ± 0 . 240 79 . 31 ± 0 . 950 0 . 75 ± 0 . 012 

UNet + [9] 71 . 62 ± 0 . 412 72 . 77 ± 5 . 927 0 . 93 ± 0 . 173 

Attention U-Net [34] 70 . 44 ± 1 . 420 75 . 27 ± 7 . 900 0 . 95 ± 0 . 303 

PSPNet [17] 65 . 95 ± 1 . 979 80 . 95 ± 4 . 126 0 . 93 ± 0 . 068 

Deeplabv3 [18] 59 . 41 ± 1 . 213 74 . 27 ± 7 . 419 1 . 05 ± 0 . 095 

Inf-Net [6] 59 . 63 ± 2 . 735 78 . 32 ± 0 . 131 1 . 09 ± 0 . 107 

SCRN [22] 68 . 46 ± 1 . 345 74 . 33 ± 6 . 288 1 . 15 ± 0 . 471 

F3Net [20] 68 . 62 ± 0 . 477 83 . 30 ± 5 . 989 0 . 83 ± 0 . 031 

DANet [28] 71 . 10 ± 0 . 731 72 . 45 ± 6 . 953 0 . 92 ± 0 . 182 

ACFNet [39] 68 . 69 ± 1 . 979 76 . 36 ± 8 . 352 0 . 84 ± 0 . 042 

CE-Net [38] 73 . 72 ± 0 . 583 71 . 38 ± 1 . 666 0 . 75 ± 0 . 012 

CPFNet [40] 74 . 65 ± 1 . 163 81 . 24 ± 1 . 700 1 . 01 ± 0 . 411 

ResUNet_C 2 F( Ours ) 72 . 81 ± 0 . 148 83 . 89 ± 1 . 358 0 . 74 ± 0 . 017 

m

[

e

t

(

s

nce between the encoder and decoder when the Co-supervision 

odules are simultaneously applied in the two paths. 

.5. Comparison of fusion methods 

Multilevel feature fusion means different level of feature maps 

re integrated together to enrich the feature information, and tra- 

itional fusion approaches usually use feature addition or concate- 

ation. An addition process is to add multiple feature maps to be 

ne, which means that the amount of information under the char- 

cteristics of the description image is increased. While a concate- 

ation is a combination of the number of channels, which means 

hat the features describing the image itself are increased, but the 

nformation under each feature is not increased. To further verify 

he advantage of the proposed AFM, a series of comparison exper- 

ments are carried out by only using different fusion approaches, 

nd the segmentation results are shown in Table 5 . It can be seen

hat the proposed AFM can surpass the other two methods in all 

etrics except S α(%) . The reason is that all feature maps are evenly

used according to the same importance in the adding or con- 

atenating process. However, it is obviously unreasonable because 

here are great differences between different levels in feature rep- 

esentations, and it is not sufficient to adaptively compensate low 

evel finer details to high level semantic features only by simple 

dding or concatenating operation. Meanwhile, the concatenation 

peration can reduce the weight of the feature maps with poor se- 

antics in the subsequent features in the convolution layer, while 

etaining rich semantic features in the channel. Whereas the ad- 

ition operation can weaken the discrimination of features due to 

he simple pixel-wise summation for the feature maps. Therefore, 

he concatenation fusion method can surpass the addition opera- 

ion. 

Fig. 8 illustrates the visual results of the fusion process by uti- 

izing an attention mechanism. Y 1 is only processed by the atten- 

ion block (AB), thereby it is the nearest output to the segmenta- 

ion prediction of the baseline. While S p is the segmentation re- 

ults by fusing multiple level feature maps, which would achieve 

he goal of both high resolution and rich semantics by combining 

he complementary strengths of multiple level feature maps. It is 

bvious that the S p is more complete than the P 1 , and its lost in-

ormation is lesser than that of the P 1 . The obtain confidence P 1 
ttaches importance to the P 1 to ensure the most information re- 

ained. As a complement to the P 1 , whereas, the confidence map 

 − P 1 pays attention to the lost detailed information, and it can 

xploit sufficient spatial and semantic features to supplement the 

ost detailed information by fusing different levels. Thus the pro- 

osed methods can overcome the under-segmentation problem of 

he baseline, and retain multi-scale contextual information from 

ultiple different levels. 

.6. Comparisons on other COVID-19 datasets 

To further verify the effectiveness and generalization ability, a 

eries of comparison experiments are conducted on MosMedData 

 42 ], UESTC-COVID-19 [ 41 ] and COVID-ChestCT [ 43 ], respectively. 

e select three important metrics for the evaluation of the COVID- 

9 lung infection segmentation, including Dice , Sens. and MAE. The 

esults are shown in Tables 6–8 . For the MosMedData dataset, our 
10 
ethod is slightly superior than Attention U-Net [34] and UNet++ 

9] with Dice metric, but it can obtain 3.06% better than its near- 

st competitor F3Net [20] with Sensitivity ( Sens. ), and can achieve 

he best performance among these three methods with all metrics 

shown in Table 6 ). In the UESTC-COVID-19 dataset, our method is 

lightly better than its nearest competitor with Dice and MAE met- 
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Fig. 8. Visual results of the fusion process based on the proposed AFM. Column 1: the original CT image; Column 2: the obtained confidence map P 1 ; Column 3: the 

confidence map 1 − P 1 of the lost detailed information; Column 4: the major result Y 1 from the top feature map x 1 through the attention block (AB); Column 5: the final 

prediction result S p ; Column 6: the corresponding ground truth (GT). 
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ics, and is slightly lower than its nearest competitor in Sensitiv- 

ty ( Sens. ). Overall, our method can obtain the best comprehensive 

erformance among these methods (shown in Table 7 ). As for the 

OVID-ChestCT, our method can achieve the first, first and third 

est performance in Sensitivity ( Sens. ), MAE and Dice , respectively. 

ompared with other methods, our method can also achieve the 

est overall performance (shown in Table 8 ). From the above re- 

ults, our method can achieve the first three best performances for 

arious datasets using all metrics, and has the best comprehensive 

erformance comparing to other methods. 

. Conclusion 

It is still a challenging task to accurately segment the infected 

esions of COVID-19 on CT images owing to the irregular shapes 

ith various sizes and indistinguishable boundaries between nor- 

al and infected tissues. In this paper, a novel segmentation 

cheme is proposed for the infection segmentation of COVID-19 on 

T Images. To achieve this, we propose three modules for deep col- 

aborative supervision and attention fusion based on ResUnet. To 

erify the effectiveness of the proposed scheme, a series of exper- 

ments are conducted on four COVID-19 datasets. The results show 

hat our method can achieve the best performance for most of the 

atasets with metrics, such as Dice , Sensitivity( Sens. ) and MAE, and 

as better generalization performance comparing to the existing 

pproaches. 

The proposed technique has four advantages as follows. Firstly, 

t is able to capture rich spatial information in various scales 

hrough an edge supervised module, denoted as the ESM, which al- 

ows to incorporate the edge supervised information into the initial 

tage of down-sampling in the framework of ResUnet. As low-level 

ayers contain richer object boundaries, they are used to define the 
11 
dge supervised loss function to capture all spatial information. 

he main benefit of this module is to highlight low-level boundary 

eatures and provide useful fine-grained constraints to guide fea- 

ure extraction in semantic segmentation tasks. Secondly, the pro- 

osed method can explore semantic information from various scale 

nfections on COVID-19 CT images by using an auxiliary semantic 

upervised module (i.e., ASSM) that can integrate the appearance 

upervised information into the later stage of down-sampling. The 

ain advantage of this module is to strengthen high-level seman- 

ic information during the feature extraction process. Thirdly, we 

ropose an attention fusion module (i.e., AFM) to fuse multiple 

cale feature maps of different levels from the up-sampling stage 

o reduce the semantic gaps between high-level and low-level fea- 

ure maps. The main advantage of this module is to strengthen and 

upplement the lost detailed information in high-level representa- 

ions. Lastly, we construct a joint loss function by combining the 

dge supervised loss, auxiliary semantic supervised loss and fusion 

oss. The joint function can guide the network in learning the fea- 

ures of COVID-19 infections, thereby achieving a deep collabora- 

ive supervision on edges and semantics. Meanwhile, it can also 

ct as an incentive to effectively fuse multi-scale feature maps of 

ifferent levels. 

Although our network can get a good result in segmenting the 

verall infection region, it is not sufficient to estimate the sever- 

ty of infected COVID-19, because finer segmentation of the dif- 

erent infection regions is required. In the future, we might col- 

ect a large amount of COVID-19 data, and consider further rec- 

gnizing the severity of COVID-19 according to the area, size, and 

ocation of infections. The code is publicly available at https:// 

ithub.com/slz674763180/COVID19 . The package includes the pro- 

osed three modules and joint loss function for reproducibility 

urposes. 

https://github.com/slz674763180/COVID19
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